Cathodic Protection

Iridium—The Ultimate in Corrosion Resistance

Iridium is a hard, brittle member of the so-called platinum group of metals in the periodic table. As an alloying element, it increases the corrosion resistance of titanium and palladium. We know that corrosion is a reaction between a material and its environment, so why not have a look at the most corrosion resistant metal in the periodic table.

New Visions for CIPS and DCVG

New instrumentation technology in the pipeline survey industry has helped produce and deliver results for the pipeline surveyor, analyst, and operator.

2018 Deadline Nears for New U.S. Underground Storage Tank Rules

The third and final deadline for underground storage tank owners and operators to meet new federal requirements from the U.S. Environmental Protection Agency for spill, overfill, and corrosion protection is October 13, 2018.

Using Sacrificial Anodes in Reinforced Concrete Structures

The primary cause of deterioration of reinforced concrete structures is corrosion of the steel reinforcing bars due to chlorides.

Perforated Offshore Monopile for Corrosion Control, Marine Habitats

Recent field experiments demonstrated that a cathodically protected perforated monopile structure could create an environment with more favorable corrosion mitigation, air quality, and water chemistry compared to a sealed structure. A newly designed perforated offshore monopile system could help mitigate corrosion within the often flooded interiors of offshore wind turbine support structures.

The Next Generation of Double Bottom Tank Cathodic Protection

A new method has been developed to allow for cathodic protection of the upper/new tank bottom in a double bottom tank.

Cost-Effective Cathodic Protection for Water Infrastructure

For equipment where coatings are the primary method of corrosion prevention, cathodic protection (CP) can provide a secondary method of protection to areas with coating damage or poor coverage.

Pocket-Sized Cathodic Protection Interrupter for Field Use

The pocket-sized cathodic protection (CP) interrupter records continuous waveforms during close interval surveys and provides accurate and defensible data. The technology includes both high-speed waveform datalogging and automated waveform analysis.

Galvanic Cathodic Protection of Corroded Reinforced Concrete Structures

This article documents projects where properly designed and installed galvanic cathodic protection (CP) systems have remained active and have met internationally recognized CP criteria for up to 20 years.

Robotics System Plugs Decommissioned Pipelines with Rigid Urethane Foam

A robotic spray-applied system utilizing rigid urethane foam could become an efficient solution to fill decommissioned energy pipelines, which would otherwise require cathodic protection (CP) or the application of a more burdensome filler, such as grout, to prevent soil corrosion.

Testing, Inspection, and Rehabilitation of Offshore Cast Iron Pipes

The City of San Francisco needed to determine the condition of offshore pipelines and their support structures and whether they were fit to continue operating, needed repairs or replacements, or required coating or lining repair.

Isolating Joint Failure for Cathodic Protection

This article discusses testing, analysis, and root cause identification of a leak occurred on an isolating joint installed on an oil transfer pipeline only seven months into operation.

Survey Instrument Offers Enhanced Data on Pipe Conditions

The new surveying instrument measures and records both close interval potential survey (CIPS) and direct current voltage gradient (DCVG) data, along with corresponding GPS coordinates from the field.

Roundtable on the Future of Corrosion Control: Part 3

In the final part of this series, three industry panelists share their predictions on where the corrosion industry is going in the next 25 years and beyond.

Designing an ICCP System for the Hull of an Arctic Ice-Breaking Vessel

For many decades the maritime industry has depended on icebreaker ships to forge a path through ice-covered waters so other ships can safely navigate the trade routes in the polar regions of the world. The effects of breaking ice can be extremely destructive to the steel hull of an ice-breaking vessel. Ice abrasion can damage the external hull’s protective coating, which leads to exposure of bare steel and rapid corrosion. To protect the hulls of these ships from corrosion, a combination of protective coatings and impressed current cathodic protection (ICCP) is often used.